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Developments in the field of Wireless Sensor Networks (WSNs) and the Internet of Things
(IoT) mean that sensor devices can now be uniquely identified using an IPv6 address and, if
suitably connected, can be directly reached from the Internet. This has a series of advan-
tages but also introduces new security vulnerabilities and exposes sensor deployments to
attack. A compromised Internet host can send malicious information to the system and
trigger incorrect actions. Should an attack take place, post-incident analysis can reveal
information about the state of the network at the time of the attack and ultimately provide
clues about the tools used to implement it, or about the attackr's identity. In this paper we
critically assess and analyse information retrieved from a device used for IoT networking,
in order to identify the factors which may have contributed to a security breach. To achieve
this, we present an approach for the extraction of RAM and flash contents from a sensor
node. Subsequently, we analyse extracted network connectivity information and we
investigate the possibility of correlating information gathered from multiple devices in
order to reconstruct the network topology. Further, we discuss experiments and analyse
how much information can be retrieved in different scenarios. Our major contribution is a
mechanism for the extraction, analysis and correlation of forensic data for IPv6-based WSN
deployments, accompanied by a tool which can analyse RAM dumps from devices running
the Contiki Operating System (OS) and powered by 8051-based, 8-bit micro-controllers.

© 2014 Digital Forensics Research Workshop. Published by Elsevier Ltd. All rights reserved.

Introduction

for networks of severely constrained devices. For instance,
IPv6 over Low Power Wireless Personal Area Networks
(6LoWPAN) (Montenegro et al., 2007) and related Internet

The 802.15.4 standard for low-power wireless commu-
nications, published by the Institute of Electrical and Elec-

tronics Engineers (IEEE), is among the key building blocks
of Wireless Sensor Network (WSN) deployments. Recent
research and standardisation efforts in the area have
resulted in the adoption of protocols of the TCP/IP family
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Engineering Task Force (IETF) specifications (Hui (Ed.) &
Thubert, 2011; Shelby (Ed.) et al., 2012) have made it
possible to use IPv6 in networks of embedded smart ob-
jects. For those networks, the IPv6 Routing Protocol for
Low-Power and Lossy Networks (RPL) (Winter (Ed.) et al.,
2012) is the de-facto standard for routing.

These developments have resulted in IoT deployments
where each node is uniquely identified by an IPv6 address
and is directly attached to the Internet. As a result,
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networks of smart embedded objects are exposed to new
types of attack. In case of an incident, post-hoc analysis
can potentially reveal the mechanism used to implement
the attack and expose some details about the attacker's
identity or location. Due to the constrained nature of IoT
devices in terms of computational and storage capacity
and due to network bandwidth limitations, logging is
limited and traditional forensic techniques are not directly
applicable.

The Contiki embedded Operating System for the IoT
features a standards-compliant TCP/IP stack, with support
for [Pv6, 6LOWPAN, RPL and other relevant specifications. It
is thus a suitable platform for this research.

In this context, this paper contributes the following:

1. We present a mechanism to extract the RAM contents of
devices running Contiki.

2. We present a method for the analysis of extracted data
and for the automated retrieval of network-related in-
formation, such as routing table and Neighbour Discov-
ery (ND) cache contents.

3. We demonstrate the capability to correlate information
gathered from multiple devices, in order to partially
reconstruct the network topology.

Background and related work

Among existing research efforts in the field of forensics
for WSNs is a remote live forensic protection framework,
which prevents the execution of tampered software on a
sensor node and informs other network nodes about an
intrusion as soon as a device gets tampered with (Zaharis
et al.,, 2010). The same work presents a sand-boxing tech-
nique to restrict memory access of a running application
within a legitimate memory space, and techniques to pre-
vent malicious code from execution by validating the
authenticity of the running application.

Triki et al. (2009) propose a solution for digital investi-
gation of wormhole attacks by creating a network of
powerful observer or investigator nodes. Observers are
responsible for the generation of information regarding
sensor node behaviour and of forwarding this information
to the network's base station. The authors also propose a
set of algorithms to analyse evidence gathered at the base
station, in order to identify colluding nodes and to recon-
struct potential wormbhole attack scenarios.

It has been demonstrated that a working prototype of a
digital forensic readiness layer can be added over an
existing IEEE 802.15.4 wireless sensor deployment (Mouton
and Venter, 2011). Similar to the aforementioned work
(Triki et al., 2009), the authors propose the addition of
powerful forensic nodes in the network. Those nodes cap-
ture all data transmitted by normal network nodes and
maintain data packet authenticity and integrity. This work
mainly focuses on the reduction of time and cost incurred
by digital investigations and on the ability to collect evi-
dence without modifications to an existing network.

A solution based on more powerful observer nodes has
also been investigated (Rekhis and Boudriga, 2009). Thanks

to increased processing capacity, these observers are
capable of analysing the patterns of various types of attack,
such as wormhole, black-hole, sink-hole and sybil. To
reduce overhead, captured traffic is processed on observers,
and only illegitimate behaviour is sent to the base station.

In a slightly different approach, it has been demon-
strated that compressed sensing techniques can be
employed in order to overhear encrypted wireless trans-
missions, detect the traffic's periodic components and ul-
timately reveal the type of application deployed in the
network (Fragkiadakis and Askoxylakis, 2013). The authors
discuss the attacker's side, but similar principles could be
adopted to conduct traffic analysis for forensic purposes.

Most research efforts discussed above gather evidence
by sniffing wireless traffic on an overlay network of
observer nodes. Setting up the observer network incurs
additional cost and imposes increased network overhead.
Furthermore, the work presented by Triki et al. (2009)
detects only worm-hole attacks, the approach proposed
by Rekhis and Boudriga (2009) detects worm-hole, black-
hole and sybil attacks, while the research contributed by
Mouton and Venter (2011) provided a framework for
integrity and authenticity of packets. The discussion in
Zaharis et al. (2010) mainly targets the detection of physical
attacks, with RAM dumps used only to verify the address
space, but without yielding any additional information. Our
work aims to address that gap by searching RAM dumps for
artefacts which can be used as evidence.

Since our work does not rely on traffic analysis, it does
not require an overlay network of observer nodes, thus
saving the additional installation cost. Communication
overhead is not added either. The work presented here is
complementary to efforts based on traffic analysis.

Relevant IETF specifications

6LoWPAN is defined by the IETF in Request for Com-
ments (RFC) 4919 (Kushalnagar et al, 2007), 4944
(Montenegro et al., 2007) and 6282 (Hui (Ed.) & Thubert,
2011). The main objective of these specifications is to
optimise transmission of Internet Protocol Version 6 (IPv6)
datagrams over IEEE 802.15.4 radio links. The need for such
optimisations arises due to the maximum layer 2 frame size
in IEEE 802.15.4 networks, which is only 127 octets
including the Media Access Control (MAC) header. A typical
User Datagram Protocol (UDP) datagram over IPv6 requires
8 bytes for the UDP header and 40 bytes for the fixed IPv6
header. Including the layer 2 header and potentially addi-
tional IPv6 extension headers results in an overhead of
approximately 65 bytes or more in each packet. In other
words, 50% or more of each frame is consumed by header
overhead. To address this situation, 6LOWPAN defines
header compression techniques through an adaptation
layer, alongside a mechanism for datagram fragmentation
and reassembly.

For 6LOWPANS, the de-facto standard routing protocol is
RPL. It is a distance vector protocol, which perceives the
6LoWPAN as a tree-like structure called a Destination Ori-
ented Directed Acyclic Graph (DODAG). The DODAG is
created based on a combination of metrics and constraints
known as objective functions and which are used to
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calculate the best path between a source and destination.
The graph building process is initiated at an administra-
tively configured node, which is essentially the tree's root
and is often referred to as a Border Router.

Data traffic in an RPL network can flow upwards in the
tree (from a node towards the root), while support for
downward flow of data traffic is optional. For point to point
communication (from any node to any node), datagrams
first travel upwards until they reach a node which is
common ancestor to both the source and destination. They
are then forwarded downwards to their destination.

RPL specifies a set of Internet Control Message Protocol
Version 6 (ICMPv6) control messages. i) DODAG Informa-
tion Solicitation (DIS), ii) DODAG Information Object (DIO),
iii) DODAG Destination Advertisement Object (DAO) and iv)
DAO Acknowledgement (DAO-ACK). Nodes use them to
exchange graph-related information.

ACPO guidelines

The Association of Chief Police Officers (ACPO) has
published a set of guidelines to deal with investigations
related with computer-based crime (Association of Chief
Police Officers, 2011). They involve four stages of evidence
recovery: collection, examination, analysis and reporting.
Additionally, no data held on a computer or storage media
should be changed by any action of a law-enforcement
agency. When access to the original data is required, the
persons handling the data should be competent to do so
and should record an explanation of the relevance and
implications of their actions. An audit trail of the forensic
process should be documented so that when a third party
repeats the process they should be able to reproduce the
same result. The person responsible for the investigation is
responsible for the handling of the evidence and ensuring
that these laws are adhered to. These recommendations
and principles should be followed while doing any
computer-related crime investigation.

Design and implementation
Our work can be broken down into the following steps:

1. Extraction: The retrieval of a copy of device RAM and
flash contents.

2. Analysis: The examination of retrieved data.

3. Co-relation: If multiple devices are being investigated,
additional information may be retrieved by co-relating
data retrieved from different devices.

Hardware and software

To implement and test our work we have used sensor
devices powered by the Contiki! open source embedded OS
for the IoT. To conduct our tests, we deployed a 6LoOWPAN
network in our labs, we allowed it to operate under normal

1 http://www.contiki-os.org.

traffic conditions and subsequently we performed the steps
discussed previously. Our testbed is formed by a combi-
nation of the following hardware platforms:

e RPL nodes: A number of Texas Instruments (TI)
SmartRF05 Evaluation Boards with CC2530 Evaluation
Modules and Sensinode N740 NanoSensors.

e RPL Root: ATI CC2531 USB dongle.

e Wireless Sniffer: A Sensinode N601 NanoRouter for live
traffic capture and analysis, primarily used for network
debugging.

The Texas Instruments devices are powered by the
CC2530 System-on-Chip (SoC), with a Micro Controller Unit
(MCU), 256 KB of flash, 8 KB of volatile RAM, a radio
transceiver and various peripherals packaged in a single
chip (Texas Instruments, 2012). The Sensinode devices are
powered by the older but very similar CC2430 SoC (128 KB
flash, 8 KB RAM) (Texas Instruments, 2007). The MCUs on
all aforementioned devices are Intel 8051 derivatives. All
our testbed devices are supported by a Contiki OS branch,
which specifically targets 8051-based architectures
(Oikonomou and Phillips, 2011).

In terms of software, our work uses the following tools:

e Toolchain: The Small Device C Compiler,” an ANSI
compliant C toolchain for embedded devices, including
devices powered by Intel 8051 CPUs, such as those used
in our testbed. It is used to build Contiki as well as all
embedded components of our work.

e Sensinode/CC2430 Flash and RAM manipulation: BooTTY
is a minimalistic bootloader which allows users to
manipulate the flash of Sensinode devices over a Uni-
versal Asynchronous Receiver/Transmitter (UART)
interface and Ball is its host-side counterpart. We orig-
inally developed them for node Over-Air Programming,
but their capabilities combined with BooTTY's very
small code footprint made them very suitable for this
work with small modifications.

Alternatively, it is possible to extract flash contents from

Sensinode devices using a tool called “Nano USB Pro-

grammer”. This tool is used to program nodes and was

provided by the manufacturer at the time of hardware
purchase.

e (CC2530 Flash and RAM manipulation: We used CC-Tool,>
an open source software which connects to 8051-based
SoCs over a debug interface. It can be used to manipulate
node flash, for instance to program new firmware or
read its contents. We modified this tool to add RAM
dumping functionality.

Extraction of flash and RAM contents

Flash and RAM contents can be extracted from devices
using the aforementioned tools. For CC2530 devices,

2 http://sdcc.sourceforge.net/.
3 http://sourceforge.net/projects/cctool/.
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OXFFFF
OXFF5F

BooTTY (160 Bytes)

Unused RAM

Fig. 1. CC2430 memory map on a node programmed with Contiki and
BooTTY.

extraction is performed with CC-Tool. For Sensinode de-
vices, two options are available: i) With Nano USB Pro-
grammer or ii) With BooTTY/Ball. The former has the
advantage that it will work without modifications to the
device. The downside is that it cannot be used for RAM
extraction. Conversely, BooTTY provides RAM extraction
capabilities but requires modifications to the device after
seizure, since the investigator will have to program the
node with the BooTTY bootloader. Conceptually, this is not
dissimilar to rooting an Android phone during forensic
investigation, which is common practice (Andriotis et al.,
2012).

This approach has the following implications. Firstly,
programming the node with a bootloader will partially
overwrite previous flash contents. The CC2430 flash
memory is organised in 64 pages of 2048 bytes each.
Overwriting a part of the CC2430 built-in flash is only
possible by first erasing the area to be re-written, with
pages being the smallest erasable unit (Texas Instruments,
2007). As discussed previously, BooTTY has a very small
code footprint: it only requires a single page on the device's
flash. In other words, to use the bootloader the modifica-
tion to node flash is the smallest possible.

Secondly, the bootloader itself requires approximately
160 bytes of RAM out of a total of 8 KB available on the SoC.
As discussed above, nodes under investigation are oper-
ating with the Contiki OS, which has been built with the
SDCC toolchain. Unless the developer dictates otherwise,
variable allocation on RAM with SDCC starts from low ad-
dresses on the memory map (0xE00O0 for the CC2430) and
increments towards address OXFFFF. Therefore, a Contiki
image with a 7 KB RAM footprint will occupy the lower 7 KB
of the device's RAM. Keeping that in mind, we have allo-
cated BooTTY's variables in high RAM addresses. Therefore,
unless a Contiki image has a very large memory footprint
(larger than 8192 — 160 bytes) the bootloader will operate
without overwriting Contiki data, as illustrated in Fig. 1.

In terms of open issues, all of the above approaches
require access to the hardware's debug interface. More
specifically, CC-Tool and Nano USB Programmer

communicate with the devices directly over the debug
interface. With BooTTY, communication takes place over
the UART interface. However, the investigator would first
need to program the device with the bootloader, which also
requires access to the debug interface. This restriction has
some implications which are further discussed in Section
Open issues.

ACPO compliant retrieval

For RAM and flash content extraction we followed the
four stages of forensic course of action: seizure (device
retrieval), examination (gathering information about the
make, model, data-sheets, debugger tools), analysis
(searching for network information, RAM carving),
reporting (creation of a forensic report for each device).

Especially in the case of extraction from Sensinode de-
vices using BooTTY/Ball, we consider two scenarios:

1. Co-operative Device Owner. In this use case, the owner of
the infrastructure has agreed to pre-load devices with
the bootloader to facilitate an investigation. In this case,
extraction can take place without changes to the
evidence.

2. Non co-operative Device Owner. In this use case, the
investigator first has to program the device with BooTTY.
Thus, principle two of computer-based electronic evi-
dence should be adhered to: The investigator must give
proper explanations and document the relevance and
implications of the bootloader installation process.
Changes caused by the investigator's actions will not be
considered as evidence.

Consequently, the pre-installation of a bootloader is
considered an important step towards the achievement of
forensic-readiness of a 6LoWPAN deployment.

In case of SmartRFO5 EB 2530 EM, since we are
extracting RAM directly over the debug interface, we are
not changing the evidence. We adhere to all the four
principles applicable on dealing with computer based
evidence.

Analysis

Analysis of flash contents

Contiki's source code is maintained on GitHub* and
source version control is conducted with the git® distrib-
uted version control system. Every time a node boots,
during startup Contiki prints a string like this:

Contiki-2.6-562-g299a292

This string follows this pattern:

Contiki-<tag>-<num-commits>-g<hash>

4 https://github.com/contiki-os/contiki.
5 http://git-scm.com/.
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This pattern can reveal some information about the
version of the source code used to build the image:

1. The most recent git tag that can be reached from the
version of the source code is <tag>.

2. The version of the source code is <num-commits>
newer than <tag>.

3. The exact version of the source code used to build the
image, as represented in the git history, was <hash>.
Note the presence of a literal ‘g’ character before the
hash, which is not part of it.

This string is stored verbatim on flash and its retrieval is
trivial; it is sufficient to open the dump with a hex editor or
perform a search with a unix shell one-liner.

If the firmware developer obtained Contiki's sources
through git and built the image without applying any
changes to the source tree, the investigator can obtain a
copy of the exact sources used. With access to the sources,
the investigator can examine the characteristics of data
structures, such as fields, offsets, data sizes, data types.
Additionally, if the investigators know the version of the
tool-chain used, they can build an identical image and
retrieve from the assembled code and symbol table the
exact RAM location of data structures. With that informa-
tion available, they can directly inspect specific memory
locations of interest, instead of having to rely on zero-
knowledge RAM carving techniques.

Analysis of RAM dumps

As part of this work, we developed a tool to automate
the analysis of RAM dumps taken from nodes equipped
with an 8051-based SoC. Even though some patterns are
visible by human eye and can be manually extracted, an
automated method can significantly speed up the process
and therefore allow investigators to apply their domain
expertise to less tedious tasks.

Our tool fully automates the discovery of networking
information present in RAM by following the steps dis-
cussed in the following paragraphs. Those steps are per-
formed sequentially. Step 1 requires a full search of the
entire RAM contents, step 2 requires a further two full
passes and lastly one more full pass takes place during step
3. All remaining steps are based on previously identified
RAM locations and do not require any further full searches.
Since RAM size is only 8 KBs, each pass takes very little
time, even less so for the remaining steps. This is further
discussed in Section Evaluation.

During the discussion in the following paragraphs, we
use the notion of a ‘valid pointer’. All nodes used in this
work are equipped with an Intel 8051-based MCU and
therefore have multiple, discrete, but partially over-
lapping memory spaces. For the CC2430 and CC2530
SoCs, those memory spaces are DATA, XDATA, SFR and
CODE (Texas Instruments, 2007, 2012). The exact map-
ping of each memory space and variable allocation
strategy depend on multiple factors, such as hardware
design, compiler extensions and command line argu-
ments and a full description is out of context of this
paper. The entire discussion in this section refers to

variables allocated to the XDATA memory space, which
maps the entire physical RAM among other things. With
this in mind, consider the following pointer declaration:

int *foo;

In SDCC terminology, this is a ‘generic’ pointer and oc-
cupies 3 bytes in RAM. The most significant byte holds the
memory space the pointer refers to and the remaining two
bytes store an address within that memory space. In this
context, a 3-byte sequence is a ‘valid pointer if:

e The MSB contains the value 0x00, which signifies that
this is a pointer to XDATA and

e The address stored in the two remaining bytes is within
the sub-region of the XDATA space which corresponds
to RAM. On the CC2430 SoCs, RAM is mapped in the
XDATA range [0xE000, 0xFFFF]. On the CC2530, RAM is
mapped between 0x0000 and 0x1FFF inclusive.

e NULL pointers are treated as ‘valid’ in this context.

1. Link-Local Unicast Addresses: We start the process with
a search for link-local addresses (FES0: : /64), which are
stored in RAM as 16-byte data chunks starting with FE 80
00 00 00 00 00 00. We store all candidate link-local ad-
dresses as well as their location in RAM, which is required
in subsequent steps. These link-local addresses may belong
to the node under investigation, but they may also belong
to one of its network neighbours.

2. Global Unicast Addresses: Each of the link-local IPv6
addresses identified during step 1 has a 64-bit wide host
suffix, which is automatically generated based on a
network interface's Extended Unique Identifier identifier
(EUI-64). The same suffix is used for the interface's global
IPv6 addresses. At this step, we search the RAM for all 16
byte occurrences ending with this 8-byte suffix and not
starting with FE 80 00 00 00 00 00 00. All matches are
potential global IPv6 addresses which may or may not
belong to the node under investigation. The first 8 bytes of
those matches are candidate network prefixes. Having
identified candidate network prefixes, we search the
entire RAM for one last time for 16-byte blocks starting
with one of those candidate network prefixes. Any such
block can also be a global IPv6 address. This step is likely
to introduce false negatives; this is discussed in Section
Evaluation.

3. EUI-64 Identifiers: As discussed above, link-local and
global IPv6 addresses are generated based on interface EUI-
64 identifiers. During this auto-generation, the 7th most
significant bit of the EUI-64 gets inverted. During the pre-
vious steps, we have identified all candidate IPv6 interface
suffixes. At this step, we search for 8-byte patterns which
match the interface suffix, but which have the 7th most
significant bit inverted. These are candidate EUI-64
identifiers.

4. Neighbour Cache (ND Cache): In Contiki, each entry in
the ND cache is a data structure containing the neighbour's
link-local IPv6 address, its EUI-64 identifier and a series of
meta data, such as the entry's lifetime and status. The cache
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itself is a statically allocated array of entries. An excerpt of
the C struct used to declare entries is displayed in Listing 1,
which also displays the definition of a cache which holds a
maximum of SIZE neighbours.

typedef struct uip_-ds6_nbr {
uint8_t isused;
uip-ipaddr_t ipaddr;
uip_lladdr_t lladdr;
/% Meta Data %/

} uip_-ds6_nbr_t;

uip_ds6_nbr_t uip_ds6_nbr_cache [SIZE];

Listing 1. An entry in Contiki's ND Cache.

The important observation is that the neighbour's IPv6
address (ipaddr) and EUI-64 identifier (11addr) are
stored in adjacent RAM locations; the corresponding
starting addresses will have a 16 byte offset. From previous
steps, we have stored the RAM offsets containing link-local
IPv6 addresses and EUI-64 identifiers. It is therefore trivial
to locate the ND cache by comparing the offsets between
those locations. Furthermore, since each entry has a fixed
size (let this be called LEN), this adjacency pattern will be
repeated every LEN bytes up to a maximum of SIZE — 1
times. Therefore, we can identify the boundaries of the ND
Cache, as displayed in Fig. 2.

5. Node's Own EUI-64 Identifier: Any EUI-64 identified
during step 3, but which is not encountered inside the ND
cache (step 4) belongs to the node under investigation.

6. Node's Own IPv6 Addresses: Among link-local and
global IPv6 addresses already identified during steps 1 and
2, those belonging to the node under investigation will
have a host suffix formed by the node's own EUI-64 iden-
tifier (step 5) with the 7th most significant bit inverted.

7. Default Route: In a RPL network, routes towards the
root of the tree (‘upward’ routes) are stored as a default
route, which is represented by the data structure displayed
in Listing 2. Observe that entries form part of a linked list.

typedef struct uip_ds6_defrt {
struct uip_ds6_defrt =xnext;
uip_ipaddr_t ipaddr;

struct stimer lifetime:
uint8_t isinfinite;

uip_ds6 _defrt_t;

—

Listing 2. An entry in Contiki's Default Routes Table.

To find default routes, we use previously identified link-
local address locations (step 1). A link-local address is part
of a default route if i) it is not one the node's own addresses
(step 6) and ii) the 3 bytes immediately preceding it in RAM

OXEOQAO 09 0C 00 23 F2 00 62 F5 00 00 00 00 00
OXEOCO 00 00 00 00 00 00[Unicast Addresses]00

S71

constitute a valid pointer (next field). The RPL instance
table also contains pointers to default routes, which is used
for verification during subsequent stages.

8. RPL Parents: A parent in the DODAG is a node's im-
mediate successor in the path towards the root (Winter
(Ed.) et al.,, 2012). An excerpt of the declaration of the
data structure representing a RPL parent is displayed in
Listing 3. Each entry starts with two generic (3-byte)
pointers (next and dag), followed by the metric container
(mc) data structure (7 bytes), followed by a link-local IPv6
address. This address may not be part of the ND Cache (step
4) and may not be among the node's own addresses (step
6). To locate RPL parents, we search RAM regions around
link-local addresses for memory blocks starting with two
contiguous valid pointers, followed by any 7 bytes, followed
by the link-local address.

struct rpl_parent {
struct rpl_parent snext;
struct rpl_dag xdag:
rpl_metric_container_t mc;
uip_ipaddr_t addr;
rpl_rank_t rank;

/x more fields x/

Listing 3. Extract of the RPL parent data structure.

9. RPL Instance Table and DODAGs: Information about RPL
instances and DODAGs is nested. Instances are stored in a
statically allocated array, with each element containing
information about an individual instance. Within each
instance, there is a sub-array holding information about the
different DODAGs associated with it. Additionally, each
DODAG data structure contains a pointer which can be used
to obtain a reverse reference to the instance hosting it.

Locating RPL DODAG information is straightforward,
since each RPL parent (step 8) holds a pointer to the DODAG
it belongs to (field dag in Listing 3). DODAG data structures
can only be encountered in RAM as part of an entry in the
instance table. As soon as a DODAG is located, the relevant
element in the instance table can be found by following the
reverse reference discussed above.

10. Network Prefixes: A network prefix is an 8-byte
sequence which can appear on RAM either by itself or as
the 8 high bytes of a global IPv6 address. The prefixes of the
networks a node belongs to are stored as part of DODAG
data structures, which have been identified during step 9.
Therefore, retrieval of network prefixes is trivial.

11. Routing Table: Routes to a specific destination are
stored in a separate data structure from the one used for

OXE160'00 0
0xE180.00_00 00_00 00 _00 00 00 00 01 FF 02 21 45f
OXE1A 00

0XELCO 00
OXELEQ 00
0xE200' 02
0xE220!00

1520 60 00 62 20
07 00 00 01 01 FE
00 58 02 00 00 04

Fig. 2. Extract of a RAM dump. The ND Cache and Interface Tables are enclosed in dashed lines. Highlights illustrate IPv6 addresses and EUI-64 identifiers.
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default routes. The relevant part of the data structure is
displayed in Listing 4. Each row in the routing table con-
tains a (destination, nexthop) tuple, which is represented
by two IPv6 addresses stored in the structure's fields
ipaddr and nexthop respectively. The former is a global
IPv6 address, while the latter is link-local. Neither can be
among the node's own addresses. During steps 1 and 2 we
have identified the location of all IPv6 addresses in RAM
and we can now search among them to identify pairs stored
in adjacent locations. The 3 bytes preceding each such pair
must constitute a valid pointer.

typedef struct uip_ds6._route {
struct uip_ds6_route =xnext;
uip_-ipaddr_t ipaddr;
uip_ipaddr_t nexthop;:
/x more fields x/

} uip_ds6_route_t;

Listing 4. An entry in Contiki's Routing Table.

12. Network Interface: It holds the network interface's
operational parameters and information about the IPv6
addresses associated with it. Addresses are stored in three
separate arrays, one per type of address (unicast, anycast,
multicast). Each array element holds a single address pre-
ceded by a single-byte flag to signify whether the element
is currently in use (isused). Additional metadata are
stored for each unicast address, resulting in a total RAM
occupancy of 28 bytes per address.

To identify the interface data structure, we search near
locations holding the node's own IPv6 addresses (step 6).
Because of RAM footprint characteristics discussed above,
two IPv6 addresses with an offset of 28 bytes between each
other are likely to be part of the interface structure. Addi-
tionally: i) the byte directly preceding each of those ad-
dresses is the isused byte and must have the value 1, ii) the
3 following bytes are state, type and isinfinite. state
can only have values 0, 1 or 2. type can only have values 0,

0002:20eb
s SV

a Y »
015a:6d50

Fig. 3. Layer 2 network information.

1, 2 or 3. Lastly, isinfinite can only be 0 or 1. Once the
boundaries of the unicast addresses array have been
identified, we search for multicast addresses relying on the
fact that each address starts with 0xFF and is preceded by
the isused byte, which must equal 1.

Correlation among multiple RAM dumps

Extracting information from a single node can aid an
investigator determine the node's networking state. It is of
interest to see whether correlating RAM dumps extracted
from multiple nodes can provide additional information
and whether the network topology can be reconstructed
through this correlation. Information found in ND caches
can help us reconstruct a layer 2 network topology (Fig. 3),
while information from the routing table and default routes
can assist with the generation of a network graph at layer 3
(Fig. 4). In both figures, each ellipsis corresponds to a node
and edges illustrate connectivity. Numbers represent the 4
high bytes of the node's IPv6 addresses. Observe how some
arrows seem to be missing in Fig. 3, for instance the arrow
from :6450 to :2145. This is due to the fact that we
generated the graph based on partial information, since we
only extracted RAM dumps from a subset of nodes in our
lab deployment.

Due to limitations posed by the number of nodes at our
disposal, the findings discussed in this section are only
preliminary. However, they do show that this kind of co-
relation is feasible, that our approach is fundamentally
correct and that it works for the link layer as well as for
layer 3.

Experimental results and evaluation

For experimentation and evaluation we set up a small
testbed in a lab environment, using the tools discussed in
Section Hardware and software. In a fashion similar to what
has been discussed in Section ACPO compliant retrieval, we
consider two use-cases, depending on whether the owner
of the deployment is co-operative with the investigator or
not. In the former case, the investigator will have at their
disposal additional information, such as the exact version
of sources used to build device images and the resulting
memory map and symbol tables. Additionally, nodes will
be pre-programmed with a bootloader (if applicable) and
the debug interface will be unlocked.

RAM retention and impact of device restarts

The CC2430 and CC2530 SoCs are equipped with 8 KB of
Static RAM (SRAM). To achieve low energy consumption,
devices of both types can operate in four different Power
Modes (PMs) numbered from 0 to 3. The CC2530's SRAM

0002:20eb 0002:2145 0117:e219
015a:6d50

Fig. 4. Layer 3 network information.
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contents are retained under all power modes, but approx-
imately half SRAM contents of the CC2430 are lost under
PMs 2 and 3 (Texas Instruments, 2007, 2012). According to
the same documentation, SRAM contents are undefined
after power-on for both SoCs.

In order to test this, we programmed Sensinode devices
with a firmware which allows us to trigger a watchdog
reboot by pressing one of the general purpose buttons on
the node. After starting the devices and letting the network
operate for a few minutes, we then pressed the button
triggering a soft reset and afterwards we immediately
retrieved RAM contents. In this scenario, we found that the
extracted image was intact and contained salvageable data.
Sensinode devices are also equipped with an on/off switch,
which we used with a similar process to cause a full power-
cycle instead of a soft reset. In this case, after a power-cycle
the RAM's non-retention area contained garbage, and we
could only recover useful data from the areas that retain
contents in all power modes.

During its boot process, Contiki populates data struc-
tures with initial values (e.g. all zeros), overwriting evi-
dence. As discussed above, a device reset will not
necessarily destroy data, but it is important to prevent
Contki from booting. If the device is programmed with
BooTTY, Contiki startup will be prevented. In all other sce-
narios, it is important to extract data immediately after
seizure and without resetting the device, in order to prevent
data structure initialisation. In an operational deployment,
devices will normally be battery-powered and the above
requirement should be possible to meet. To achieve this, an
investigator will have to connect the device to a PC and
immediately start the extraction without power-cycling it.

Table 1 summarises the data extraction process' level of
success under different scenarios. Failure signifies that
Contiki restarted fully and set all variables to initial values,
overwriting previous data. Partial indicates that RAM con-
tents were partially lost due to RAM retention character-
istics after a device reset.

Evaluation

As discussed in Section Analysis, the analyser tool parses
the entire RAM four times. At the end of the last pass, all
RAM locations of interest have been identified and stored.
The remainder of the analysis is conducted by inspecting
those areas only and is extremely fast. For example, the
time to analyse 500 RAM dumps was approximately 2 min
and 40 s on a typical desktop computer.

Our RAM carving mechanism can occasionally yield
false positives, by flagging a memory block as an area of
interest when in reality it is not. During our experimen-
tation, this only occurred for small data structures, such
as IPv6 addresses and EUI-64 identifiers. From what we
observed in our experiments, the tool usually identifies
between 10 and 15 candidate IPv6 addresses present in a
RAM dump, including node's own addresses, as well as
addresses present in the routing table and the neighbour
cache. Among those, no more than 1 or 2 were false
positives. Similar metrics apply in the case of EUI-64
identifiers. Those must subsequently be identified by
applying the investigator's domain expertise, but given

the small number of occurrences, we consider this to be a
trivial task. In terms of the more complex data structures
(e.g. the ND cache and RPL instance table) they adhere to
very detailed rules and follow very specific patterns,
making them unlikely to occur randomly. This is espe-
cially true for data structures which link to each other
through pointers, for instance by being part of a linked
list. If a number of memory locations have been identified
as candidate matches, we verify that this is not a false
negative by following next pointers and confirming that
all matches are indeed part of a linked list. For data
structures that are part of a pre-allocated array and
occupy contiguous memory blocks, verification is based
on offsets between consecutive occurrences.

Imaginary use-case

The GINSENG research project demonstrated that it is
possible to use a WSN of Contiki-powered nodes to control
mission-critical applications in an operational oil refinery
(ODonovan et al,, 2013). Even though this effort used a
bespoke network stack, the control systems industry has
been considering a move to open standards, such as TCP/IP
and web technologies (Byres and Lowe, 2004). Thus, future
adoption of 6LoWPAN for industrial automation is not
inconceivable.

In order to demonstrate our work's potential usefulness,
we discuss an imaginary scenario of an industrial auto-
mation system, which uses wireless sensors to monitor and
control environmental parameters and machinery. The
sensors form a 6LOWPAN/RPL network and communicate,
over IPv6, with a central server for data reporting, com-
mand and control. An attacker uses a similar sensor node to
join the network by exploiting IPv6 ND or RPL vulnerabil-
ities and subsequently induces malicious commands to the
automation system, causing disruption, loss of availability
and financial loss. The owner of the deployment has kept a
record of the EUI-64 identifiers and IPv6 addresses of the
nodes in the network. The network topology cannot be
known a-priori, since RPL uses wireless link quality metrics
to determine the best path between nodes and the net-
work's root. Nevertheless, by using the techniques
described in this paper, investigators can conclude that
these commands did not originate from a node within the
deployment, but from an EUI-64/IPv6 address combination
assigned to an external, unauthorised device. Investigation
of nearby premises then reveals a device with the EUI-64
identifier used to implement the attack. At an even later
stage, by reverse engineering the firmware running on this
device, it may even be possible to determine the exact
method used to implement the attack.

Open issues

The CC2430 and CC2530 SoCs are equipped with a
proprietary debugging interface (Texas Instruments, 2007,
2012); this allows operations such as programming the
SoC flash, or single-stepped instruction execution. As dis-
cussed in Section Extraction of flash and RAM contents,
extraction of RAM and flash contents requires access to this
debug interface.
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Table 1
Data Extraction Success Matrix. Success indicates that all information
discussed in Section Analysis of RAM dumps was successfully recovered.

Device not Device Device
reset soft-reset power-cycled

Device and use-case

Sensinode N740

Bootloader Pre-Installed Success Partial

Bootloader Partial Partial Failure
Installed by Investigator

SmartRFO5EB + CC2530EM  Success Data Data

Overwritten Overwritten

Unauthorised access or update is prevented by various
sets of lock bits, also stored on the flash (within the flash
information page). When the lock bits are enabled, the
extraction process discussed in Section Extraction of flash
and RAM contents will be impossible, since the only way
to re-enable debugging is by erasing the contents of the
entire flash (via so-called bulk erasure). Bypassing this
mechanism is an issue we did not pursue, but that is clearly
important: for co-operative device owners (who are
required to pre-install BooTTY) it may be reasonable to
leave the flash unlocked, but certainly not so for non co-
operative owners.

Joye and Tunstall (2012, Chapter 16) survey fault injec-
tion techniques wrt. cryptographic targets, placing a gen-
eral emphasis on faults during computation rather than in
stored data. At least two strategies seem viable in theory:

1. With control over both the debug clock and chip power
supply, glitch- and depletion-base (Joye & Tun-stall,
2012, Section 16.2.2) approaches could disrupt the bulk
erase process (e.g., using a partial- and full-power supply
for the main and information pages respectively, in an
attempt to “skip” writes to the former and hence retain
the content).

2. Targeted injection of an optical (Skorobogatov and
Anderson, 2002; Skorobogatov, 2010) (e.g., laser) or
EM-based stimulus could attempt to “bump” lock bits
into a disabled state; this would typically imply chip
depackaging (with the result classed as semi-invasive,
though not necessarily destructive).

Realising such strategies concretely is challenging
however. Even if successful, further questions relate to
alignment with the ACPO guidelines: fault injection tech-
niques are typically probabilistic, so it is possible evidence
on the flash may be altered during the process in ways that
are not easy to quantify or reproduce (even after profiling a
replica device to maximise efficacy).

Support for different hardware and OSs

The current version of this work targets the Contiki
Operating System. In order to conduct successful forensic
analysis, it is common practice for tools to be aware of the
Operating System under investigation. For example, Vola-
tility® requires knowledge of the underlying OS in order to

6 https://code.google.com/p/volatility/.

successfully analyse RAM dumps. Similarly, forensic tools
for smartphones rely on knowing whether the OS under
analysis is Android (and what version) or iOS. Currently,
there are four dominant operating systems for embedded
devices: Contiki, TinyOS, OpenWSN and FreeRTOS. To our
knowledge, our hardware is only supported by Contiki.
Therefore, in order to extend this work to different OSs, it
would first have to be extended to support more hardware
platforms. Within Contiki, the networking artifacts under
investigation in this work are implemented in a platform-
independent fashion and data structure declarations are
identical. Even so, due to differences related to toolchains
and MCU architectures, the following issues would have to
be taken under consideration:

Data structure padding and alignment: This work in-
vestigates builds for 8-bit MCUs, and the toolchain will not
pad data structures in this instance. To extend this work for
16- or 32-bit architectures, parts of the RAM carving algo-
rithm would have to be re-written in order to take into
consideration the possibility of padding and issues related
to memory alignment. This is trivial.

Valid pointers: The notion of valid pointers discussed
earlier in this paper only applies to SDCC builds for 8051-
based MCUs. For architectures using a single memory
space for instruction and data memory and where images
are built using a gcc-derivative, the validity of pointers
would relate to the start and end address of memory re-
gions (.data, .bss, .text). For instance, a function pointer will
normally be expected to point to within the boundaries of
.text, whereas a pointer to a data structure in RAM will
normally point to a location within the boundaries of the
.data section. Nevertheless, even under a different defini-
tion, the notion of valid pointers will still be relevant and
we believe that the differences discussed here would not be
an insurmountable obstacle.

Extraction: For RAM content extraction, we rely on
BooTTY and Ball for CC2430s and on a modified version of
cc-tool for CC2530s. Embedded platforms with high market
penetration are typically accompanied by similar open-
source tools that can be used to program them. One such
example is a python script distributed with Contiki and
used to program the Cortex M3-based CC2538 SoCs. Those
tools are good candidates for modification in order to
achieve the goal of RAM extraction.

The task of extending this work to support additional
operating systems would be more complicated. This is due
to the fact that the implementations of 6LoWPAN, RPL and
related specifications have considerable differences across
different OSs. For example, TinyOS ships with the Berkeley
Low-power IP stack (BLIP), which is an implementation of a
number of IP-based protocols. Basic data structures such as
IPv6 addresses and EUI-64 identifiers are likely to be
identical, but we anticipate major differences in terms of
routing tables, RPL-related data structures and the format
of the ND cache.

Conclusion and future work
In this paper we have presented a method for the

extraction and analysis of networking evidence from de-
vices used in 6LOWPANSs. As part of this work, we have
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developed a series of accompanying tools, including one
which automates and facilitates analysis, thus allowing the
investigator to focus on tasks which require domain
expertise. The tool is reliable, fast and produces very few
false positives. We also demonstrated that it is possible to
partially reconstruct the network's layer 2 and 3 topologies,
by correlating information extracted by only a subset of the
nodes forming the network.

We now aim to investigate the requirements which
need to be satisfied before we can reconstruct the full to-
pology. In a large deployment of hundreds of devices, it will
then be possible to achieve good results by investigating
only a subset of carefully selected nodes, possibly in
conjunction with traffic analysis techniques. Multiple
image correlation with traffic analysis can also be used to
detect specific attack patterns, such as Man in the Middle.

Investigations can be further facilitated by a logging
infrastructure. It is possible to log some information on
devices themselves, but this has drawbacks: Limited stor-
age capacity means the logs can not be very detailed.
Furthermore, logs will be distributed across the entire
deployment and correlation will need to take place. It is
also possible to implement a centralised logging infra-
structure, for instance by using a syslog server. In this
scenario, the drawback is that logging messages would
increase network traffic and the approach would not scale
well with deployment size and level of required logging
detail. We aim to investigate hybrid approaches, whereby
logs are cached locally and sent to a remote location peri-
odically, possibly in an aggregated fashion.

For future work, we aim to extend our tool to support
analysis of RAM dumps taken from devices of different
architectures. We aim to support MSP430-based and ARM
Cortex-based devices. The former due to their existing
success and high market penetration and the latter because
they are getting adopted by an increasing number of node
manufacturers. Once these objectives have been achieved,
our method will apply to a mix of 8, 16 and 32-bit MCUs of
Harvard as well as Von Neumann architectures, offering
very high technology coverage.
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